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Received 4 October 1977, in final form 14 March 1978 

Abstract. The states to which weakly dissipative systems in constant external conditions 
tend are examined. At vanishing dissipation, several steady states, which are super- 
positions of steady states of an isolated conservative system, can exist. With increasing 
dissipation, these states can form clusters. When the correlation time of the conservative 
motions is finite, a description with a probability density, which is a solution of a Fokker- 
Planck equation in a coarse grained phase space, seems possible. 

1. Introduction 

The deterministic dissipative problems which we discuss arise, mostly, from a descrip- 
tion of physical systems with macroscopic variables: order parameters, gross or 
collective variables, modes, etc. In some cases the description may be partly micro- 
scopic, e.g. friction forces acting on heavy particles. ‘Weakly’ refers to a part of the 
dissipation to be defined later, the total dissipation may be important. The interaction 
to which the dissipation is due also produces fluctuating forces which we do not take 
into account, these systems produce their own ‘macroscopic’ fluctuations. An aspect 
of the opposite case, when the ‘macroscopic’ fluctuations are negligible, has been 
considered by Haken (1975a). We treat situations where the external conditions do 
not depend on time, with the aim of obtaining the physical properties of the state to 
which the system tends after a long time interval. This state is referred to as a steady 
state, although the macroscopic variables generally do not tend to constant values. 

Steady states in which the variables do not vary in time are particularly well 
understood and they can often be interpreted in the framework of the ther- 
modynamics of irreversible processes (Glansdorff and Prigogine 197 1). There is also 
an extensive literature on steady states with variables periodic in time, based on 
methods related to the Hopf bifurcation. More complicated steady states form an 
object of the theories of turbulence in fluids, recent accounts are given by Leslie 
(1973), Orszag (1970), Monin and Yaglom (1971, 1974). We use a different approach 
and therefore do not review this work. 

No consensus seems to exist about what dissipative systems are. We adopt the 
view that dissipation manifests itself in a qualitative property of the orbits: dissipative 
attraction. The orbits approach indefinitely asymptotically stable invariant sets in 
phase space, which are attractors if not decomposable. When a dissipative system is 
observed during a long time interval, the statistical properties of motions, which start 
in the domain of attraction (basin) of an attractor, are the same as those of motions 
which start on the attractor itself and remain on it. A probability distribution defined 
on an attractor thus also refers to its basin, to the entire phase space when the 
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attractor is unique. For turbulent motions of fluids this has been formulated by 
Landau and Lifshitz (1969) and later by Hopf (1948); they thought the attractors were 
tori covered with quasi-periodic orbits. However, experiment indicates the existence 
of a continuous spectrum (Gollub and Swinney 1975). An explanation is due to 
Ruelle and Takens (1971) who showed that, in most cases, the orbits on a torus T", 
n 3 4 are not dense but have strange attractors which are not manifolds. The motions 
on these strange attractors have the expected qualitative properties. 

Turbulent motions are probably frequent for dissipative systems with many 
degrees of freedom. It is likely that, in many cases, a dissipative equation of motion 
restricted to an invariant manifold, n 3 2, is still dissipative: the orbits are not every- 
where dense on the manifold but have attractors. The situation occurring on tori 
suggests that a typical turbulent attractor is probably strange. 

Dissipative systems can be described with a statistical equation. Due to the 
volume contracting property of dissipative (semi)flows, the probability density may 
become singular when t + c ~  and the Liouville equation cannot be used. An attempt 
to adapt this equation to dissipative systems was made by Hopf (1952). The charac- 
teristic function is used in place of the probability density, its evolution equation is the 
Fourier transform of the Liouville equation. For non-linear systems with many 
degrees of freedom Hopf's equation is very complicated and the stability of the steady 
state solutions must be checked. 

Deterministic macroscopic equations give a somewhat incomplete description of 
dissipative systems, in fixed external conditions the steady state may not be unique. It 
becomes so when thermodynamic fluctuations are introduced. This question arises 
more rarely for weakly dissipative systems, as we shall see. 

It would be desirable to formulate the theory of dissipative systems with the degree 
of generality of the thermodynamics of irreversible processes, but the steady states of 
strongly dissipative systems seem still very different from what they are in conser- 
vative systems. This is essentially due to the strangeness of the attractors. A pro- 
bability distribution can still be defined, but it is not an invariant Lebesgue measure 
and this is a considerable complication. 

It is therefore interesting that, when dissipation is weak, the steady states can be 
described by an approach which avoids these difficulties in most cases (Larisch 1977). 
It becomes possible due to the evolution of the attractors; when dissipation is vanish- 
ingly small, they are everywhere dense in much simpler sets. A coarse grained 
probability density can be defined when dissipation increases; it is the solution of a 
Fokker-Planck equation. The generally unique steady state appears as composed of 
several metastable states. The results can be formulated in the framework of the 
thermodynamics of irreversible processes and we shall present this in a forthcoming 
paper. 

The idea of the approach is demonstrated for two simple examples. Then we 
discuss some qualitative properties of weakly dissipative systems before turning to 
their quantitative description. 

2. Examples 

2.1. The model of Saltzman and Lorenz 

Since Lorenz (1963) performed numerical calculations and apparently found strange 
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attractors for the equation (rescaled): 

x1= x2- v a x 1  i 2 = ~ 1 ( ~ 3 -  ~)-vPxZ 

x 3  = - x 1 x 2  - 4 x 3  - a )  a, P, v ’ 0 

which is a model for the transition to turbulence in convection; it has been studied by 
many authors who we cannot mention here. Haken (1975b) showed that it also 
describes certain lasers and that it refers to a conservative system with the equation of 
motion: 

x 1  = x2 x 2  = X l ( X 3  - 1) x 3  = - x 1 x 2  (2) 

under the action of a friction force (-vaxl, -v/3xz, - v x 3 )  and of a driving force 
(0, 0, vu). The conservative equation has two first integrals: 

I l  = x: +x: +x: 1 2  = X2 + (x3- 

The conservative equation (2) thus defines a decomposition of the phase space in 
closed invariant manifolds $(I) which are periodic orbits. 

As noticed by Lorenz, the distance of a moving point from the origin decreases 
when it is outside the ellipsoid B : il = 0. Any motion which starts at a finite distance 
from the origin will thus enter the smallest sphere I l  = f ( a ,  /3, v) which encloses 9 
after a finite time and remain there. One easily sees that B is a PoincarC section. 
Another qualitative property of equation (1) is that the basins of its attractors are 
infinite. A boundary of a basin, a separatrix 9, is an integral surface of equation (1) 
but this equation has no closed integral surfaces, as div i = -v(a + P  + 1)< 0. 

We are interested in the steady states of the model system when v<< 1, so it is 
natural to look at deformations of those at v + +O. New coordinates 11, 1 2 ,  8 are 
introduced, where 8 is an angle along $ ( I )  and equation (1) becomes: 

11 = V D L l ( 1 ,  e )  i 2  = vD,2(1, e )  e = C(I ,  e)+ VD~,(I ,  e). (3) 

When v << 1, one may expect a relation between the attractors d” of equation (3) 
and some of the ~ ( I ) , l imU++od”=$(1 , )  (e.g., Urabe 1967, Moser 1970 treats 
conservative systems but his approach is closer to ours). To find these I,, equation (3) 
can be treated with the method of averaging: 

The average is for the conservative motion on $ ( I )  so I is kept constant. D,  is the 
component of D normal to $( I ) .  The quantity 4$cr,=(TC)-’ is the conservative 
probability density and equation (4) can be written: 

1 = v(DL(~,e))$(r)  (5  1 
where (. . 

The I, are the isolated attracting critical points of equation (5 ) .  When v<< 1, 
v < v*, d” is a periodic orbit situated in a v-neighbourhood of $(I,). Thus, at v < v* 
the model system can have several steady states SL which are close to ‘microcanonic’ 
states S, of the conservative system. All attractors of equation (5) are probably points 
but some may not be isolated; they would correspond to turbulent attractors. 

Qualitative changes occur when v > v*. Let us assume there are two attractors, at 
v >  vT, v T  they can coalesce. Then, an orbit on d” remains, on the average, a 

denotes conservative averaging on 9(1). 
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proportion of the time p l ,  p2 near the attractors &, a(: and the steady state can 
be approximately characterised as S” - p l S l  + p 2 S z .  Such a situation has been 
described by Haken and Wunderlin (1977). 

2.2. The model of Lefever and Prigogine (1968) 

This model has been introduced as a simple example of chemical reaction-diffusion 
leading to dissipative structures. It has been studied by several authors, more recently 
by Auchmuty and Nicolis (1976). After a rescaling, the evolution equation is: 

U = u(x, t ) ;  U, v, U ,  d l ,  d2  > 0. An initial and boundary value problem is formulated for 
this equation. Again, we shall be interested in the properties of the stable steady 
states when v << 1 .  

When v = 0, equation ( 6 )  has the first integrals 21 = U I + U Z .  In the variable 
I, 2 e = U - u2: 

I = i v [ - I  - 8 + U  + (dl + dz)  AI + (dl - dz)  A81 

8 = - (8  +1) (O2-I2+  l ) + i v [ - I -  8 + U  - (-d,+dZ) AI - (dl  + d z )  A8] .  

Thus, when v = 0, the evolution equation defines a decomposition of the phase space 
in invariant manifolds which extend to infinity, the planes u1 + u2 = constant. On each 
of these planes the motion is dissipative; it has the attractor 6 = -I and, for I > 1 ,  also 
the attractor 6 = (1’- 1)’l2.  We consider situations when not only v<< 1 but also 
vd Au << 1 ,  excepting narrow transition layers. Then, in the bulk of the recipient, the 
evolution can be described as follows. A rapid motion brings the system to the 
neighbourhood of one of the above attractors. Then, the system evolves slowly 
according to one of the equations: 

i = f v ( u  + 2d2 AI)  

and, for I > 1 ,  also; 

I = ~ V [ U  - I  - ( I 2  - 1)l” + (d1+ dz)  AI + (dl - dz)  A(Iz - l)’”]. 

We cannot discuss here the variety of steady states which occur for different boundary 
conditions and values of a, d .  

3. Some qualitative properties of dissipative systems 

We consider discrete systems with a finite-dimensional phase space, although many 
results can be easily extended to continuous systems. As a definition for ‘dissipative’ 
we take the basic property of equation (1): to an initial condition corresponds a unique 
motion which, after a finite time, enters some closed domain of the phase space and 
remains there. Obviously, all attractors of such systems are finite. 

Let x = X ( x )  be the equation of motion of the system. A situation frequently met 
is that the dissipative vector field X is ‘hyperbolic’: it is contracting in some directions 
and dilating in others. Hyperbolic vector fields have a practically important property: 
some, at least, of their attractors are on invariant manifolds (Neimark 1972). No 
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general method to find these invariant manifolds seems to exist. When X is contrac- 
ting in all directions, there is a unique attractor, a critical point. 

In many cases the (semi)flow of X is volume contracting (div X < 0). Then, as for 
the Saltzman-Lorenz model, the phase space, and also the basins of the attractors, are 
infinite; indeed, no closed separatrix can exist. 

When X has a symmetry group g, the phases xg with this symmetry are on 
invariant manifolds yg which decompose in parts corresponding to the irreducible 
subgroups gi of g. Each manifold $a has attractors of the flow of X restricted to 
$&, and some of these ‘restricted’ attractors may actually have a basin of non-zero 
volume. When this occurs, almost symmetric vector fields may be expected to have 
almost symmetric attractors, due to the structural stability of dissipative systems. 
Attractors with a symmetry group are often observed experimentally. 

Little is known about the nature and number of the attractors of dissipative 
systems, in general. The weakly dissipative systems however, to which we turn now, 
can be described in detail. These systems have equations of motion which resemble 
equation (1): 

x = X ( x )  = C(x)+ vD(x) x = ( X I , .  . . , XN)  (7) 
where C is a conservative and D a dissipative vector field. Conservative here means 
the following. The vector field C has at least one first integral ul} whose integral 
surfaces are closed. Let UI}, . . . , un} be the n sz N first integrals of C; the 
intersection of surfaces from all first integrals defines a family of invariant manifolds of 
C, @(I)}, which are numbered by a vector I = (Il, . . . , I,,). The flow of C restricted 
to most $ ( I )  is assumed ergodic. Obviously, if the first integrals can be written as 
F k ( x ) =  I&, k = 1, . . . , n, $(I) is the manifold where F ( x ) =  I. As we shall see, the 
properties of these systems also resemble those of the model of Saltzman and Lorenz. 

The steady states of systems with such equations of motion, if the $(I) ’s  are tori 
and the orbits of C are quasi-periodic, can sometimes be determined exactly when 
v<< 1 (see, e.g., Mitropolski and Lykova 1973 for results and references). As in Q 2, 
coordinates 8 are introduced on the manifolds $(I) and equation (7) is written in the 
form: 

i = e) e = C(I,  e)+ V D ~ ~ ( I ,  e) (8) 
The components of D normal and parallel to the manifold $(I) are denoted DI, Dll; 
one has D ,  = D grad F. To equation (8) corresponds the averaged equation: 

i = v ( ~ L ( ~ ,  e))s(,, = VD! (I). (9) 
The average (. . .)scr, is calculated with the probability distribution on the torus T(I) of 
the conservative flow-the ‘microcanonic’ distribution. If the averaged equation (9) 
has an attracting isolated critical point I, then, for 0 < v < v*(I,), equation (8) has an 
invariant asymptotically stable torus T y ( I a )  in a v-neighbourhood of T(Ia) and 
limv++o Y v ( I , )  = T(1,). The torus 9” itself is unlikely to be an attractor when 
N - n > 1. If N - n = 2, in most cases the attractors are critical and periodic points; 
when N - n 3 4, they are likely to be strange, as mentioned. 

No proof seems to exist when the attractor of the averaged system is not a point or 
when the conservative orbits on the $ ( I )  are not quasi-periodic. Such orbits are 
related to completely integrable Hamiltonian systems and are thus rare. We shall use 
a conjecture introduced by Larisch (1977) which applies to dissipative systems with 
equations of motion having the form (8) and the ergodic property of the conservative 



1752 E Larisch 

flow. The averaged equation: 

i = V ( D ~ ( I ,  O $ ( r )  = v ~ ?  (1) (10) 

is obtained using for the calculation of (. . .)$(,) the probability distribution on $(I), 
again the ‘microcanonic’ probability distribution. When div C = 0, as is the case for 
Hamiltonian systems, the probability density 43(r) is well known. The volume in 
phase space is an invariant measure, so if dT = &(I, 6 )  dI d e  is the volume element, 

Let 9 be an attractor of the averaged flow defined by equation (10). We denote by 
$(9) the set in phase space made of $(I)’s with I in 9. It is very likely that, when v is 
small, there are attractors SQ’ in a v-neighbourhood of the $(9)’s. The conjecture is 
that when v + +O the attractors 4’ are everywhere dense in the $(9J)’s; the ergodicity 
of the conservative flow on the $ ( I )  makes this plausible. As we shall see, this 
conjecture can be brought closer to a proof. 

One could imagine that equation (8) has asymptotically stable invariant sets $’(a) 
near the $(a) and limv++,,$’(9) = $(9) but this does not necessarily occur. When an 
attractor d” is strange and there are several attractors 9, d” may decompose into 
several ‘weakly’ connected pieces which are near different f (9 ) ’s .  When v + +O these 
pieces are everywhere dense in the corresponding $@). 

The important case when there is one conservative first integral is particularly 
simple. In this case d7 = d u  dIl/l(VFlII where d a  is the area element on $(Il), so the 
‘microcanonic’ probability distribution is: 

and the equation of the averaged flow is: 

~ ~ V F l ~ ~ - l  d 3 - l  / div D dT. (14) 
11 = v(S,(r,) vv(rl)) 

The last integral is over the volume enclosed by the surface $(Il). In the frequently 
met case when (div D)g(r,)< 0 the attractors 9 are the points 11, for which V = 0; the 
$(9) ’s  are thus the degenerate surfaces of the first integral. 

4. Steady states of weakly dissipative systems 

A steady state S’ of a dissipative system is naturally identified with an attractor d” of 
its equation of motion. The converse may not be true in weakly dissipative systems; 
several attractors SQ” may correspond to the same steady state S”, that is have close 
statistical properties. A physical property can be written as: 

r 
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where dpd  is the probability distribution on d. The computation of this average is 
still difficult; due to the frequent strangeness of d, d p d  is not a Lebesgue measure. 

It is important to remark that what one actually needs for the description of the 
steady state is not necessarily the attractor d and the probability distribution dwd, but 
a procedure for the calculation of physical properties. Suppose we can immerse the 
attractor d in a manifold d and define on 2 a measure d p 2  so that: 

for any smooth function V(x) .  Then the statistics of the steady state could be based 
on p i  and this would be a considerable simplification. 

A known, but complicated, way to perform this is to assume that the system 
interacts weakly (<< v) with a reservoir, The action of the reservoir is a small random 
force added to X. A probability density 4, which is a solution of a Fokker-Planck 
equation, can be introduced. The attractors are supposed stable to such perturbations 
(Sinai 1972 proved this in some cases) so q5 will have very marked maxima in rejions 
which narrowly enclose the attractors. These regions can be used as manifolds d with 
d p i =  4 dx. Haken (1975a) showed that when the interaction with the reservoir is of 
the order of v the Fokker-Planck equation can be reduced to one for a system whose 
equation of motion is (10). 

The conjecture introduced in 0 3 permits us to avoid the artifice of a reservoir. We 
shall look first at the limit v + +O. Since the attractors do are assumed to be dense 
everywhere in the sets 9(9) these sets can be used as a support for a probability 
distribution (Larisch 1977). Conservative systems with more than two first integrals 
are probably rare, so the 9(9) are in most cases manifolds, critical or periodic points. 

The probability distribution for the steady states So can be easily obtained. Let 
dt,b3(9) be the probability distribution for the steady states with attractors which are in 
f(9). The probability distribution of I is defined by the averaged equation (10) and 
does not depend on 8, so d+3(9) can be written as a product: 

d*3(9) = d * m  d*9 (17) 

where the first factor is the probability distribution of 8 when I is fixed and the second 
factor is the probability distribution of I. dt+b$(r) refers to the flow of C + vDll on the 
$ ( I )  in limit v -P +O; as the flow of C is ergodic, this limit does not depend on Dll and is 
simply the microcanonic distribution. When 9 is a manifold, that is in most cases, 

Wa = 4sa(I) dI. (18) 

The easiest to describe are 9 ' s  which are isolated critical points Ia, and d$3(a) = 
d+b3(w. The system is in a 'microcanonic' state with the conservative first integrals 
having the values I,. Such steady states, if n = 1, have properties of thermodynamic 
equilibrium. Many examples are known, an early one has been observed for tunnel 
diodes (Landauer 1962). 

When 9 is a periodic orbit, I = I ( a ) ,  I ( a  + 1) = I(cr), as in Q 2: 

The qualitative physical properties of a system with a periodic 9 depend on the 
nature of the conservative orbits. When they are quasi-periodic, a slow periodic 
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variation of the frequencies appears. This effect can be observed in systems of weakly 
coupled harmonic oscillators with small friction and driving forces. In other cases, a 
periodic process is superposed on a random background. This is, probably, observed 
in turbulent boundary layers (for a review see Willmarth 1975). 

A system whose attractor 9 is not a point can be described as undergoing an 
almost adiabatic process whose time variation is that of the motion of Z on 9. The 
effect of this slow modulation on the line spectrum of a system with quasi-periodic 
orbits is well known. 

We turn now to situations where v cannot be considered vanishingly small. The 
properties of systems where C has quasi-periodic orbits should not change 
significantly as long as v remains sufficiently small. It is probable that, in this case, 
there are attractors d’ in a v-neighbourhood of a f(9) even when 9 is not a point, if 
v < v*. Then, for v < min v*, one may expect the probability distribution to be close 
to that for v = +O. Close here means that the difference in simultaneous averages is 
small with v, but qualitative differences can appear. 

A completely different situation occurs when the conservative flow on the f(Z) has 
finite correlation time. Let tc(Z) be the correlation time on f(Z) defined by: 

Then, when 

as we shall see, v* = +O. To put this in evidence, we write the equation of motion in 
the form: 

i= v ~ :  + v ( ~ I - ~ : ) =  v ~ : ( z ) + v ~ : ( z ,  e) e = c + VDII. (22) 

This equation can be interpreted as describing the interaction of the ‘collective’ 
variables Z with the ‘microscopic’ variables 8 due to dissipation. The effect of this 
interaction on the collective motion is through the fluctuating force 0:. When v is as 
in (21), the evolution of the collective variables is like a Brownian motion in the force 
field vD:, Actually, it resembles a diffusion and the orbit of Z will leave the v- 
neighbourhood of the f(9) already when v > O. 

A precise description of such a system is too complicated, the attractors can be 
imagined as being spread over the phase space. To obtain a smooth picture, we use a 
coarse graining of the phase space in bundles of f(Z)’s of width SZ with: 

vtcllD1II<< SI << dU(1)) (23) 

where d@(Z)) is the diameter of $(Z). Rather than in the fine structure of the 
attractors, we are interested in the variation of Jdpd,  where the integral is over a 
bundle; we represent it with a probability density c$(I): I dpd = d+$(I) + ( I )  dZ. A 
master equation can be written for c$(I) (see e.g. Stratonovich 1963) which, when 
truncated, reduces to the Fokker-Planck equation: 
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The additional drift coefficient v2d is given by: 

and the diffusion coefficient Y ~ K  is: 
0 

Kik = I-, K[Dli ,  TTDlk] d7. 

The notations are: 

We can now formulate precisely the notion 'weakly dissipative'. When the 
conservative orbits are quasi-periodic, it means v < v*; when they have finite cor- 
relation time, it means the possibility of coarse graining expressed by the inequalities 

The Fokker-Planck equation (24) is supposed to have a unique acceptable solu- 
tion, with finite norm and vanishing at the boundary of the system (the Fokker-Planck 
operator is contracting, Lebowitz and Bergman 1957). The effect of weak dissipative 
forces on a conservative system whose motions have finite correlation time is thus to 
create a unique steady state S'. This state has a 'fine structure'; it is composed of 
several steady states S: with v-close statistical properties, corresponding to the 
different d:. The probability density 4 has very marked maxima in v-neighbour- 
hoods of the attractors 9; practically, it is only near the sets f (9)  that the system can 
be found. An intuitive picture is that the attractors d:, which are in the f (9)  when 
v = +0, grow protuberances when v increases, which spread over the phase space and 
connect the different f(9). The coalescence of the attractors, which can occur at 
v > v* in the quasi-periodic case, starts here presumably at v > 0. 

(23). 

The physical properties can be calculated with the solution of equation (24): 

U =I (u(Z, @hr)4(Z)dZ.  (27) 

More precisely, S' is unique should mean: 

for almost all attractors d-those with a non-zero basin when v-,+O. Thus, the 
probability distribution 4 dZ plays, for weakly dissipative systems, the role of the 
canonical distribution for conservative systems. 

The composition of the states S' can be described as follows. Each attractor 
can be characterised by a probability pp : 

The integral is over a domain which includes only and so that 4 is small on its 
boundary. It can also be characterised by a relaxation time T ~ ,  and p u / ~ p  = constant. 
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The state S” is a superposition of the metastable states Si: 
0 S’ = 1 pus: = 1 T , S ,  

As is well known for such cases, metastable states with a relaxation time comparable 
to the duration of the experiment appear as stable. When v + +0, the relaxation times 
become infinite so the transition between the metastable states is impossible. 

We assumed that the Fokker-Planck equation has a unique acceptable solution, 
but this imposes conditions on the diffusion coefficient which may not always be 
fulfilled. For example, among the $ ( I )  a small number may not have finite correlation 
time. If this occurs on a $(I), it occurs generally also on the $(I)% in its neighbour- 
hood. In these small volumes the diffusion coefficient cannot be defined and they may 
exert some influence on the solution of the Fokker-Planck equation. If these volumes 
are small in one direction only, they may constitute barriers to diffusion and produce a 
decomposition of the solution of the Fokker-Planck equation in several independent 
parts. 

5. Discussion 

The approach, presented for systems with equations of motion like the Saltzman and 
Lorenz model, can easily be extended to those resembling the model of Prigogine and 
Lefever. Fluids in turbulent motion could be an example. We still consider systems 
with equations of motion of the form (7), but the assumed properties of C are 
different. The requirements that C had a closed first integral and that its flow 
restricted to the %;(I)’s be ergodic is dropped. Instead, this flow could be dissipative 
with finite attractors W U ( I ) ,  The results of 00  3,4 can easily be extended to such cases. 

To simplify, let there be one attractor %(I); then, we replace the conservative 
average on $ ( I )  with an average on %(I) :  

i = Y ( D I ) ‘ Q ( I ) +  vD:(I, e) .  (31) 
Due to the presumed structural stability of the dissipative flow restricted to the %;(I)’s, 
averages calculated on the attractors of C + vDll will tend to those on the %(I)% when 
v + O .  The Fokker-Planck equation, corresponding to equation (31) can also be 
written, if the flow of C restricted to the %(I)% has finite correlation time. 

The diffusion approximation for the probability density, expressed by equation 
(24), is obtained from a formal expansion of the stochastic process in powers of v, in 
which only the first two terms are kept, while higher derivatives, multiplied with 
higher powers of v are neglected. The validity of the approximation can be checked in 
some cases. It seems plausible, but a result characterising the systems for which the 
Fokker-Planck equation gives a correct qualitative picture at small v is lacking. 
Expansions of this type, in a slowness parameter, have been used, e.g., by Mori et a1 
(1974). When the diffusion approximation applies, it is a confirmation of the con- 
jecture introduced in § 3; indeed, when v + +O, the support of the probability density 
contracts to the $(S)’s. 

We have shown that when the statistical properties of the system with the equation 
of motion x = C are known, they can easily be obtained also when there is a weak 
dissipative action. Indeed, it has been possible to formulate an independent problem 
for the statistical distribution of the values of the first integrals. This is similar to the 
theories in which the dynamics of a part of the components of the phases of a system is 
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studied. Green (1952) and Van Kampen (1957) use the conservative first integrals; 
Prigogine (1962) treats a similar problem when the perturbation is also conservative; 
as an application of the Nakashima-Zwanzig method we mention Nordholm and 
Zwanzig (1975), for Mori’s method, Mori and Fujisaka (1973). For dissipative 
systems, methods based on an evolution equation for the probability density in phase 
space meet with the difficulties already mentioned in using such an equation. In the 
weakly dissipative case, and in the steady state, a coarse grained probability density in 
a reduced phase space can be defined and an equation for it written. 

The ergodic theory of dissipative flows also lacks, apparently, general results and it 
is not always possible to say if the basic relation: 

lim - F(x(t‘)t  dt’ = 
r - m t  I‘ 0 

with an orbit starting in the basin of an attractor, but not on it, is true. When d has an 
even number of invariant parts, the invariant measure may not be unique and addi- 
tional conditions are then necessary to choose the ergodic measure; these conditions 
are known in some cases (e.g. for the so called axiom A flows, Bowen and Ruelle 
1975). 

The description of the steady states of weakly dissipative systems, which appears 
from 0 4, seems particularly simple. When v + +0, there can be several steady states 
So in which ‘microcanonic’ states are superposed on the probability distribution of the 
attractors 9. For systems with a quasi-periodic conservative flow, this picture is only 
slightly modified when v < v*; at v > Y* the steady states can form clusters through a 
coalescence of attractors. Conservative flows with finite correlation time induce a 
fusion of the So steady states already when v > 0. In this case a generalised canonical 
probability density can be defined which is a solution of a Fokker-Planck equation. 
We hope that further research will show that this simple and intuitive picture covers a 
broad range of dissipative systems. 
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